Skip to main content

About

This Blog:

I started this blog in 2013 with the purpose of sharing tasks, books, applets, activities and mathematical problems with students of mathematics at the Faculty of Education, University of Colima.


In general, the blog contains activities, digital books (nonprofit), GeoGebra Applets, essays on various subjects (math, and history teaching and learning of mathematics), mathematical problems and possible solutions, among other things.



I will periodically publish materials, which I hope will be useful for reflection on various topics of mathematics as well as for teaching and learning of mathematics.

Acerca:

Comencé este Blog en 2013 con el propósito de compartir tareas, libros, applets, actividades y problemas matemáticos con estudiantes del área de matemáticas de la Facultad de Ciencias de la Educación, Universidad de Colima. 

En general, el Blog contiene actividades, libros digitales (sin fines de lucro), Applets realizados en GeoGebra, ensayos acerca de temas diversos (matemáticas, enseñanza y aprendizaje e historia de las matemáticas), problemas matemáticos y sus posibles soluciones, entre otras cosas.    

Seguiré publicando material periódicamente, el cual espero sea de utilidad para la reflexión de temas diversos de matemáticas, así como la para enseñanza y aprendizaje de las matemáticas. 

Contacto: 
j.ponce@uq.edu.au
poncecampuzanocarlos@gmail.com

School of Mathematics and Physics
University of Queensland



Foto by JCPC.




Comments

More

Distancia, velocidad y aceleración

Cálculo Diferencial: Método para encontrar la velocidad de un movimiento cuando se conoce la distancia recorrida en un tiempo dado.
Cálculo Integral: Método para encontrar la distancia recorrida cuando se conoce la velocidad.
Intuitivamente:
Para encontrar la distancia recorrida de un objeto, cuando se conoce la velocidad, se recurre al cálculo integral, es decir, se debe calcular el área bajo la curva que representa la dependencia de la velocidad respecto del tiempo.
Para encontrar la velocidad de un movimiento cuando se conoce la distancia recorrida en un tiempo dado, se recurre al cálculo diferencial, es decir, se debe calcular la derivada de la curva que representa la dependencia de la distancia respecto del tiempo.
El problema de la integración es recíproco al problema de derivación y viceversa.
- Al integrar, función velocidad, se calcula distancia. - Al derivar, función distancia, se calcula velocidad
Applets de Geogebra 
Representación del movimiento. En estos applets pueden modificar…

Representaciones en 3D: Espiral y curva paramétrica de pi

Otro uso de proyecciones ortográficas con Geogebra.

1. Curva paramétrica para representar a $\pi$
Para generar la curva que representa a $\pi$ se requiere utilizar una ecuación paramétrica.

En matemáticas, una ecuación paramétrica permite representar una o varias curvas o superficies en el plano o en el espacio, mediante valores arbitrarios o mediante una constante, llamada parámetro, en lugar de mediante una variable independiente de cuyos valores se desprenden los de la variable dependiente.
Por ejemplo: Dada la ecuación $y = x^2$, una parametrización tendrá la forma $$\begin{cases} x = u (t) \\ y = v (t) \end{cases}$$
Una parametrización posible sería $$\begin{cases} x = t \\ y = t^2 \end{cases}$$
Una circunferencia con centro en el origen de coordenadas y radio $r$ verifica que $x^2 + y^2 =r^2$.
Una expresión paramétrica de la circunferencia es $\begin{cases} x = r \cos t  \\ y = r \sin t \end{cases}$
1.1 Curva $\pi$:
En nuestro caso, para generar la curva $\pi$, es necesario defini…

Möbius transformations with stereographic projections

A Möbius transformation of the plane is a rational function of the form $$f(z) = \frac{a z + b}{c z + d}$$ of one complex variable $z$. Here the coefficients $a, b, c, d$ are complex numbers satisfying $ad - bc\neq 0.$
Geometrically, a Möbius transformation can be obtained by stereographic projection of the complex plane onto an admissible sphere in $\mathbb R^3$, followed by a rigid motion of the sphere in $\mathbb R^3$ which maps it to another admissible sphere, followed by stereographic projection back to the plane. 
Inversion



A Möbius transformation is a combination of dilatation, inversion, translation, and rotation.
The following applet shows the stereographic projection representing different Möbius transformations. Move the sliders to see what happens.


Made with GeoGebra, link here: http://tube.geogebra.org/student/m839839. This applet was made based on the work of D. N. Arnold and J. Rogness.
Further reading:
Arnold, D. N. & Rogness, J. (2008).  Möbius transformations revea…